Adiabatic limit of the Eta invariant over cofinite quotients of PSL(2,R)

نویسندگان

  • Paul Loya
  • Sergiu Moroianu
  • Jinsung Park
چکیده

The eta invariant of the Dirac operator over a noncompact cofinite quotient of PSL(2,R) is defined through a regularized trace following Melrose. It reduces to the standard definition in terms of eigenvalues in the case of a totally nontrivial spin structure. When the S1-fibers are rescaled, the metric becomes of nonexact fibred-cusp type near the ends. We completely describe the continuous spectrum of the Dirac operator with respect to the rescaled metric and its dependence on the spin structure, and show that the adiabatic limit of the eta invariant is essentially the volume of the base hyperbolic Riemann surface with cusps, extending some of the results of Seade and Steer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adiabatic Limit of the Eta Invariant over Cofinite Quotient of Psl(2,r)

We study the adiabatic limit of the eta invariant of the Dirac operator over cofinite quotient of PSL(2,R), which is a noncompact manifold with a nonexact fibred-cusp metric near the ends.

متن کامل

Aps Boundary Conditions, Eta Invariants and Adiabatic Limits

We prove an adiabatic limit formula for the eta invariant of a manifold with boundary. The eta invariant is defined using the Atiyah-PatodiSinger boundary condition and the underlying manifold is fibered over a manifold with boundary. Our result extends the work of Bismut-Cheeger to manifolds with boundary.

متن کامل

QHI Theory, II: Dilogarithmic and Quantum Hyperbolic Invariants of 3-Manifolds with PSL(2,C)-Characters

We give parallel constructions of an invariant R(W,ρ), based on the classical Rogers dilogarithm, and of quantum hyperbolic invariants (QHI), based on the Faddeev-Kashaev quantum dilogarithms, for flat PSL(2,C)-bundles ρ over closed oriented 3-manifolds W . All these invariants are explicitely computed as a sum or state sums over the same hyperbolic ideal tetrahedra of the idealization of any f...

متن کامل

Eta Invariants of Dirac Operators on Circle Bundles over Riemann Surfaces and Virtual Dimensions of Finite Energy Seiberg-witten Moduli Spaces

Using an adiabatic collapse trick we determine, by two different methods, the eta invariants of many Dirac type operators on circle bundles over Riemann surfaces. These results, coupled with a delicate spectral flow computat ion, are then used to determine the virtual dimensions of moduli spaces of finite energy Seiberg-Witten monopoles on 4-manifolds bounding such circle bundles. TABLE OF CONT...

متن کامل

Adiabatic Limit, Heat Kernel and Analytic Torsion

The adiabatic limit refers to the geometric degeneration in which the metric is been blown up along certain directions. The study of the adiabatic limit of geometric invariants is initiated by E. Witten [39], who relates the adiabatic limit of the η-invariant to the holonomy of determinant line bundle, the so called “global anomaly”. In this case the manifold is fibered over a circle and the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010